

LINEARMECH product range also includes a complete Series of drives, specifically engineered and developed for Linearmech brushless servomotors BM Series and linear servoactuators SA Series. Linearmech can provide you a **full package solution** with the advantage of having a sole responsible partner from the initial phase of product selection up to the start-up operations of your applications.

2.1 General features

Drives ECO Series by LINEARMECH are full digital products, optimized to control sinusoidal motors.

The implemented control (**Field Oriented Control**) allows high accuracy in motion control, together with Torque, Speed and Positioning control.

The **integrated mechatronic functions** also allows to manage even complex movements with simple digital / serial inputs.

Drives ECO Series operating modes:

TORQUE CONTROL

- analogic reference (0 ... 10) V
- access to the internal drive registers (field networks)

SPEED CONTROL

- analogic reference ± 10V
- access to the internal drive registers (field networks)

POSITIONING CONTROL

- SAP (Stand Alone Positioning)
- MSQ (Multi Sequencer)
- Electrical Axis
- Field networks

Ethercat (Coe) CANopen (DS402) RS 422/485 (SNET @ 19200 Baud) Modbus RTU (@ 19200 Baud)

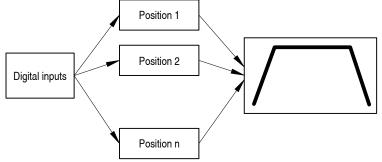
The RS 422 serial port is available as standard. It enables the connection of all drives to a PC through a **serial line**.

The **"DRIVEWATCHER" application software** allows you to manage settings and debug functions. The software allows you to analyze all the data both coming from the drive unit and from the complete dynamic system, load and actuators parameters included.

Using the program utility, it is possible to save and control (graphics and diagrams allow you to have an immediate visual response) all the relevant measurements during the operations, such as speed, power, voltage. This to get the real evaluation of the required torque and finally to reach the better optimization of the system as a whole.

Following sections refer to the general information of each single operating mode; for more information, please refer to the specific manuals.

2.2 SAP (Stand Alone Positioning)


The SAP integrated mechatronic function allows to obtain a completely independent positioning, without any PLCs or PCs.

Through the selection of digital inputs, it is possible to recall TARGET positions, previously set inside the drive with DRIVE WATCHER software tool.

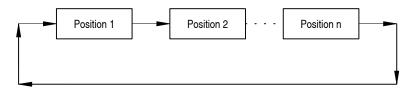
The system allows the following movements:

- · ZERO SETTING, positioning adjustment related to the input of a sensor
- Movement with an ABSOLUTE positioning related to a reference position
- Movement with a RELATIVE positioning related to the current position

SAP operating mode

		- 3	2	× * .		1						_
Posters			-	-				Constan properties	-			_
Position 1	30	abaolube	- 2	-		e administra	2	Velocity 1 0			Acceletation 100	
Position 2	9	apoolute	1.5	-Tanina Tr. (_	#out-to	1	Velocity 2 0			Deceleration 100	-
Pointen 3	0	abookate	1.1	Common 10	_	April 101	21			Lines	Alam Ja	
Facilitian II	0	abook/le	1.1	Figure 14		doid,0y	20	Special position pro	pater:			
Pointion 5	n	abiişkute	1.2	Parent D 9		W-skith.	100		Pueton 35	Position 2	Pustion 28	Paulion 29
Position F	0	absokite	- 6	1 P		gatiket.	20	position a	0	jù.	15	10
Position 7	0	endorate	1.1	Prover /U		ALTER OF	2	dre-cooley	0	1	2	0
Pholion ®	D	abacadas	1.2	Finites.27		abuoit.re	- 2	acceleration a->b	1d	0	12	0
Postern 3	ů.	dbirth,the	1.2	A Bellewick 1		aboii 0	1	deceleration and	0	19	0	0
Preition 10	0	abookie	1.0	Famoret 1		shiikis	- 21	rose intras add	0	0	0	0
17	0	ubirol/re		Provid D	_	poisto	2	position b	a	0	0	10
Provide La	11	Minister	- 2	Porte I		ALC: NO.	-	webscopy and the	0.	0	10	U
1	9	distin				ADVOLUTE.	2	acceleration billion	0	10	15	0
Process 14	0	Al-clife	1.2	Provide D	-	Abarphian	8	deceleration bit end	Common State of Common State o	6	10	10
F	0	distance.	1					max torque b->end		10	12	10.
Common Reg	pilet:					-	Paramet	211		- If	Update Mode	
Feed Constan	ok.	60	0	Motion Phoble Type	0		d1 20	C7 1	0 0 15	0	Normal	
In Velocity		12	0	Acceleration Jest	10	0	12 50	0 mil	1 to 1	0	O On the fly	
Honerg Meth	50	0	0	Deceletation Jen.	10	0	15 39	🕡 n [20	6 22 0	0	- Aller and	
Hone Ditant		10	0	Torpet Window	21474836	47 🕡	出 99	10	1 c4 10		Using mode	
Homing Fresh	Speed	0	Q.	Following Error Window	1	- 0	d7 0	0 a 0	1 H 10	0	- Hutating Lebie	
Honeig Stove	Speed	0	0	Following Erris Term Dut	100	=ğ	48 0	🕦 is 💽	1 5 0	0	Fills moved	
Haming Acce	riodersia	100	õ	Ton Oast	0	õ	1000	15	-01.0	-õ	Estunded mod	e

SAP Control panel


2.3 MSQ (Motion Sequencer)

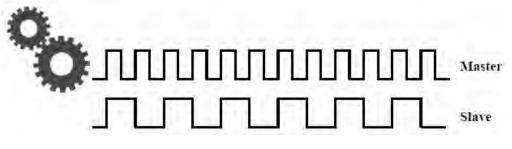
The MSQ integrated mechatronic function allows connecting a sequence of independent movements to manage even sophisticated applications, without any PLCs or PCs.

The system allows the following movements:

- ZERO SETTING, positioning adjustment related to the input of a sensor
- Movement with an ABSOLUTE positioning related to a reference position
- Movement with a RELATIVE positioning related to the current position
- Movement index
- Movement positioning after counting
- Movement positioning by external signal

MSQ operating mode

-	6	4	3 2 🔊			\$
				Registers.		
	Configure	Step 0		Feed Constant	60	
Step 0	M-Typer	0 -		Homing Method	0	
	Enable digital	input Sync Tr	edge + grale	Home Othert	0	
Step 1	Enable digte	neur NewSte	0	Homing Fast Speed	0	
Doeb (and the second second		wäter king edge	Honary Slow Speed	10	_
-	T Enable Start		to an a solution	Honing Acceleration	100	_
Step 2				/log Acceleration	100	_
100	T Enable Mityp	a Control bits		Jog Deceleration	100	-
	Target Position	10	-	Jog vehicity	3	-
Step 3	1 agen (concert	1	olulin postern	Target Window	12142483647	-1
		and a second	emerical positions referred to move start	Following Error Window Following Error Time Dut	100	-
Step 4	Velocity	10	Prolie type tapezoidal •	Pooban Window Dtl	0	-
- Steep 4	1	-		Position Window Max	0	-
-	Acceleration	10	Acceleration Jest. 0	Poston Window Inin	0	
Shep.5	Decelevation	10	Deceleration Jerk 0		2	
	Ext Postion	0		Parameters	12. 100	
Step 6		-		en 20 🕤 es 0	🕤 n 🖸	
step ti	Tative preset	0		2 50 12 0	2 10	
-	Counter	0	Step il counter a U 0 *	a5 33 🚺 a2 0	0 a 🕡	
Step 7		-	Step # counter = 0 0 -	d5 99 07 c7 1 d7 0 07 cs 0	- 0 H 0	


MSQ Control panel

2.4 Electrical axis

The Electrical Axis integrated mechatronic function allows relating the movement of a servomotor (SLAVE) to the action of another motor (MASTER encoder). Possibility to set a given transmission ratio trough a parameter (electric cam).

ELECTRICAL AXIS operating mode

2.5 Field Networks

Thanks to the fieldbus networks, it is possible to manage the drive by exchanging the information with a MASTER system in serial mode.

They offer great flexibility thanks to the possibility of modifying parameters, sending a speed or position setpoint or adding specific mechatronic functions.

A reduced need for wiring is possible by connecting several drives to the same serial line. Field networks differ from each other in communication speed, numbers of functions that can be managed and reference standards.

ETHERCAT

According to the new standards of industrial applications, the Ethercat fieldbus is now taking the lead.

High-speed communication bus, able to get real-time performances of drives. Specifically useful in case of application when many axes are involved with high dynamic and performance needs.

Ethercat is an industrial communication protocol with high performances, which extend the IEEE 802.3 Ethernet standard, allowing data transfer with predictable timing and an extremely precise synchronization. All datas are transferred in the standard Ethernet frame without modifying the basic structure.

For this reason the connection of the drive to an Ethercat network in made by a RJ45 connector, whose wiring respects Ethernet / IEEE 802.3 10Base-T, 100Base-TX and1000Base standards.

The Ethercat protocol applied on the Linearmech ECO Series Drives is Ethercat (CoE), this means a CANopen over EtherCAT.

CANopen

CANopen is a standard application for automation systems based on CAN (Controller Area Network) offering the following performance features:

- Transmission of critical data process according to the producer / consumer principle
- Standard description of the device (data, parameters, functions, programs) in the form of the so-called "object dictionary"
- Standard services for device monitoring, error signal (emergency messages) and network coordination ("network management")

The implemented protocol refers to the CiA CANopen - Device Profile Drives and Motion Control - DSP 402 v1.1.

RS 422/485 - MODBUS RTU

These networks are very flexible but not really fast. Mostly used for changing parameters, positioning registers and running integrated mechatronic functions.

2.6 Models and functions

	ELECTRIC	AL CHARAC	TERISTICS	ME	CHATRONI	C FUNCTIO	NS
Model	Supply voltage [V]	Rated current [A] (RMS value)	Peak current [A] (RMS value)	Analogic	SAP MSQ	Electrical axis	Field networks
MICROECO 10-20	24 48 V dc	10	20	•	•	-	• (NO Ethercat)
MINIECO 3-6		3	6	_			•
MINIECO PLUS 4-8	230 V ac	4	8	•	-		(NO Ethercat)
ECO 2D 4-10	000 \/	4	10	_	_	_	•
ECO 2D 6-15	230 V ac	6	15	•	•	•	(Ethercat optional)
ECO 4D 4-10		4	10			•	
ECO 4D 5-13	400 V ac	5	13	•	•		• (Ethercat optional)
ECO 4D 10-20		10	20				υριιοι αι)

NOTE: Ethercat fieldbus network only available for ECO2D and ECO4D Drives Series.

2.7 Available trasducers

	ELECTRIC	AL CHARAC	TERISTICS	SUPP	ORTED FEEDB	ACKS	
Model	Supply voltage [V]	Rated current [A] (RMS value)		Incremental encoder 5 V LD with switching sensors E01	Resolver	Absolute multiturn encoder with BISS protocol A01	
MICROECO 10-20	24 48 V dc	10	20	•	-	-	
MINIECO 3-6		3	6			-	
MINIECO PLUS 4-8	230 V ac	4	8	•	-	optional	
ECO 2D 4-10		4	10		ontional	antional	
ECO 2D 6-15	230 V ac	6	15	•	optional	optional	
ECO 4D 4-10		4	10				
ECO 4D 5-13	400 V ac	5	13	•	optional	optional	
ECO 4D 10-20		10	20				

NOTE: in case of use of a RESOLVER or an ABSOLUTE ENCODER, please contact our Technical Dpt. for assistance in Linearmech ECO Series Drive product selection and configuration.

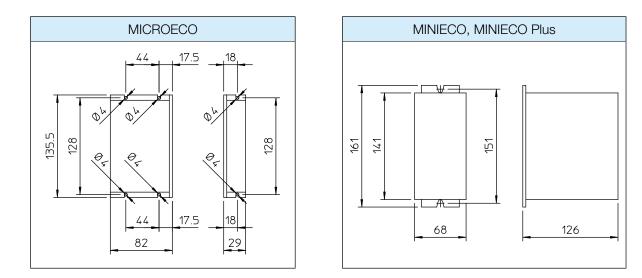
2.8 Recommended Servomotors - Drives matching

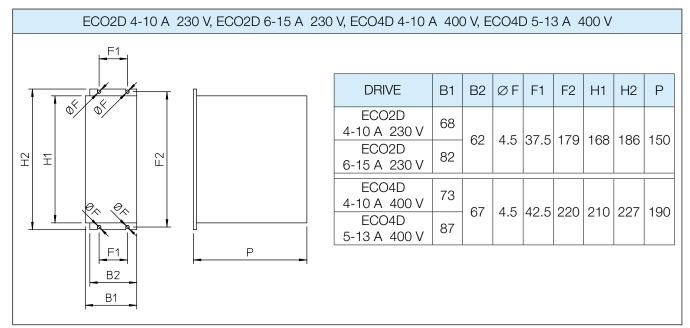
The table below shows the recommended matching between **Linearmech Servomotors BM Series** and **Drives ECO Series** with the related performances (standard motor wiring rated speed 3000 rpm).

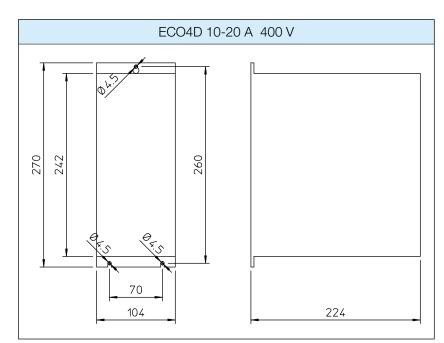
WARNING: the performance diagrams shows in Chapter 1.5 refers to the maximum motor performances. Possible degrading in performances must be considered depending on the selected drive, as specified in the table below.

			BM 45 L	BM 63 S	BM 63 L	BM 82 S
		Т _{о, 100К} [Nm]	0.35	0.44	0.38	
	24 V dc	T _{nom, 100K} [Nm]	0.32	0.34	0.35	
MINIECO		T _p [Nm]	0.86	0.82	0.76	
10-20		T _{0, 100K} [Nm]	0.35	0.70	0.89	
	48 V dc	T _{nom, 100K} [Nm]	0.32	0.60	0.84	
		T _p [Nm]	1.05	1.65	1.67	
		Т _{о, 100К} [Nm]	0.35	0.70	1.35	1.50
MINIECO 3-6		T _{nom, 100K} [Nm]	0.32	0.60	1.30	1.30
00	000 \/ 00	T _p [Nm]	1.05	2.10	3.80	3.10
MINIECO	230 V ac	T _{0, 100K} [Nm]	0.35	0.70	1.35	1.50
PLUS		T _{nom, 100K} [Nm]	0.32	0.60	1.30	1.30
4-8		T _p [Nm]	1.05	2.10	4.20	4.10
	– 230 V ac	Т _{о, 100К} [Nm]	0.35	0.70	1.35	1.50
ECO 2D 4-10		T _{nom, 100K} [Nm]	0.32	0.60	1.30	1.30
4 10		T _p [Nm]	1.05	2.10	4.20	4.50
		T _{0, 100K} [Nm]				
ECO 2D 6-15		T _{nom, 100K} [Nm]				
0 10		T _p [Nm]				
		Т _{о, 100К} [Nm]				1.50
ECO 4D 4-10		T _{nom, 100K} [Nm]				1.30
1 10		T _p [Nm]				4.50
		Т _{о, 100К} [Nm]				
ECO 4D 5-13	400 V ac	T _{nom, 100K} [Nm]				
0 10		T _p [Nm]				
		Т _{о, 100к} [Nm]				
ECO 4D 10-20		T _{nom, 100K} [Nm]				
10 20		T _p [Nm]				

2.8 Recommended Servomotors - Drives matching


The table below shows the recommended matching between **Linearmech Servomotors BM Series** and **Drives ECO Series** with the related performances (standard motor wiring rated speed 3000 rpm).


WARNING: the performance diagrams shows in Chapter 1.5 refers to the maximum motor performances. Possible degrading in performances must be considered depending on the selected drive, as specified in the table below.


BM 82 L	BM 102 S	BM 102 L6	BM 102 L8			
				[Nm] T _{0, 100K}		
				[Nm] T _{nom, 100K}	24 V dc	
				[Nm] T _p		MINIECO 10-20
				[Nm] T _{0, 100K}		
				[Nm] T _{nom, 100K}	48 V dc	
				[Nm] T _p		
1.90				[Nm] T _{0, 100K}		
1.52				[Nm] T _{nom, 100K}		MINIECO 3-6
3.65				[Nm] T _p	220 V aa	
2.50				[[NIII] I _{0, 100K}	230 V ac	MINIECO PLUS
2.16				[Nm] T _{nom, 100K}		
4.80				[Nm] T _p		4-8
2.50	3.22			[Nm] T _{0, 100K}		ECO 2D 4-10
2.16	2.10			[Nm] T _{nom, 100K}		
6.10	6.72			[Nm] T _p	230 V ac	
2.90	4.82	4.50	4.70	[Nm] T _{0, 100K}	200 v ac	
2.50	3.70	3.90	2.50	[Nm] T _{nom, 100K}		ECO 2D 6-15
9.00	10.10	9.30	11.80	[Nm] T _p		0.0
2.90	5.20	4.80	6.20	[Nm] T _{0, 100K}		F00 (D
2.50	4.10	3.90	3.90	[Nm] T _{nom, 100K}		ECO 4D 4-10
9.00	10.70	10.00	13.80	[Nm] T _p		
	5.20	6.00	7.70	[Nm] T _{0, 100K}		F00 (D
	4.10	5.10	5.45	[Nm] T _{nom, 100K}	400 V ac	ECO 4D 5-13
	13.90	13.00	17.50	[Nm] T _p		
	5.20	7.30	9.00	[Nm] T _{0, 100K}		
	4.10	6.40	6.70	[Nm] T _{nom, 100K}		ECO 4D 10-20
	15.00	20.00	24.30	[Nm] T _p		

2.9 Dimensions

3. Connecting cables

On request, wirings can be supplied with power and signal connectors from the servomotor to the drive. The standard cable length is 5 m.

3.1 Power supply cable

Outer jacket material:	PVC - Class 43 for UL 1581 and CSA 22.2 n°210 Colour: orange
Operating temperature:	for fixed wiring, without external mechanical stress: (- $40 \dots + 80$)°C for mobile laying cables: (- $10 \dots + 80$)°C
Minimum bending radius:	for fixed wiring: $4 \times \text{cable diameter}$ for mobile laying cables: 7.5 × cable diameter
Max. shifting speed for trailing cables:	3 m/s
Max. acceleration/deceleration:	10 m/s ²
Fatigue life for trailing cables:	(3 6) million movements
Operating voltage:	STYLE 2464: 300 V (UL) - U ₀ /U 450/750 V STYLE 2570: 1000 V (UL)
Reference standards:	CSA 22.2 n°210, UL 1581
Approvals:	Up recognized / CSA (FU° or c FU° us) AWM STYLE 2464 80°C 300 V - CSA c FU° us AWM STYLE 2570 80°C 1000 V - CSA
Fire performance:	self-extinguishing VW-1 (UL); FT1 (CSA); IEC 60332-1, CEI 20-35 (EU)
Industrial oils resistance:	ASTM n°2, IRM 902, IEC 60811-2-1

3.2 Signal cable

Outer jacket material:	PVC - Class 43 for UL 1581 and CSA 22.2 n°210 Colour: green
Operating temperature:	for fixed wiring, without external mechanical stress: (- $40 \dots + 80$)°C for mobile laying cables: (- $10 \dots + 80$)°C
Minimum bending radius:	for fixed wiring: $4 \times$ cable diameter for mobile laying cables: 7.5 \times cable diameter
Max. shifting speed for trailing cables:	3 m/s
Max. acceleration/deceleration:	10 m/s ²
Fatigue life for trailing cables:	(3 6) million movements
Operating voltage:	30 V - 300 V (UL)
Reference standards:	CSA 22.2 n°210, UL 1581
Approvals:	Wrecognized / CSA (AU° or CAU°) AWM STYLE 2464 80°C 300 V - CSA CAU® AWM STYLE 2570 80°C 1000 V - CSA
Fire performance:	self-extinguishing VW-1 (UL); FT1 (CSA); IEC 60332-1, CEI 20-35 (EU)

ASTM n°2, IRM 902, IEC 60811-2-1

Industrial oils resistance:

4. Ordering code

4.1 Servomotor ordering code

В	6M 45 L	-	30	24	E01	CV	01	L		
	1	2	3	4	5	6	7	8		
1	Servomo	otor size					page 6-9			
2										
	- = witho	ut brake								
		holding brake 2	24V dc							
3		-								
		0 rpm (standar	d)							
	40 = 400									
	50 = 500									
	60 = 600									
4	Drive su	oply voltage					page 35			
	24 = 24 \	/ dc								
	48 = 48 \	/ dc								
	230 = 23	0 V ac - 1-pha	se							
	400 = 40	0 V ac - 3-pha	se							
5	Motor fe	edback					page 26			
	E01: opti	cal encoder, Lll	NE-DRIVER, 2	000 ppr (stanc	lard)					
	R01: reso	olver, 1 pole pai	irs 7 V rms, 10	kHz (optional)	1					
	A01: BIS	S absolute mul	titurn encoder	(option availab	ble starting from	n size BM 63)				
	- = witho	ut device								
6	Electrica	l connections					page 28-30			
	CV = pov	ver and signal o	cable, 0.5 m lo	ng, no connec	ctors					
	CN = dou	uble 90° conne	ctor							
7	Thermal	protection					page 27			
	01 = PTC	C (³)								
	02 = PTC)								
	03 = KTY	′ 84-130 (³)								
8	Output s	shaft version					page 10-25			
	C = cyline	drical shaft								
	L = shaft	with key								

- (1) available only for BM 45 and BM 63 sizes Contact our Technical Dpt. for more information
- (2) available only for BM 45 size Contact our Technical Dpt. for more information
- (3) not supported by ECO series drives supplied by Linearmech

4. Ordering code

4.2 Drive ordering code

ECO 2D 4-10	230 V	SAP + MSQ	E01	-
1	2	3	4	5

1 Drive model	page 35
2 Supply voltage	page 35
3 Positioner	page 35
4 Motor feedback	page 35
5 Ethercat communication bus	page 35

Linearmech ECO Series Drives complete options and coding:

Model	Supply voltage	Positioner	Feedback	Ethercat
MICROECO 10-20	24 48 V dc	SAP + MSQ	E01	-
MINIECO 3-6	230 V ac	SAP + MSQ	E01	-
MINIECO PLUS	230 V ac	-	E01	-
4-8	200 • 40		A01	-
			E01	- Ethercat
ECO 2D 4-10	230 V ac	SAP + MSQ	R01	- Ethercat
			A01	- Ethercat
	230 V ac	ac SAP + MSQ	E01	- Ethercat
ECO 2D 6-15			R01	- Ethercat
			A01	- Ethercat
			E01	- Ethercat
ECO 4D 4-10	400 V ac	SAP + MSQ	R01	- Ethercat
			A01	- Ethercat
			E01	- Ethercat
ECO 4D 5-13	400 V ac	SAP + MSQ	R01	- Ethercat
			A01	- Ethercat
			E01	- Ethercat
ECO 4D 10-20	400 V ac	SAP + MSQ	R01	- Ethercat
			A01	-
			//01	Ethercat

Linear-Mech.

4. Ordering code

4.3 Connecting cables ordering code

4.3.1 Signal cables

CS		R01	M17	05	1	
	1	2	3	4	5	
1	Cable type			page 39		
	CS = signal cable					
	CP = power supply c					
2	Trasducer page 26				26	
	E01: optical encoder, LINE-DRIVER, 2000 ppr					
	R01: resolver, 1 polar pair, 7 V rms, 10 kHz					
A01: BISS absolute multiturn encoder						
3	Motor side connectors page 28-30				28-30	
	M17 = M17 17-pole o	connector				
	M23 = M23 17-pole connector					
4	Length					
	05 = 5 meters					
10 = 10 meters						
15 = 15 meters						
5	Drive side connectors					
	1 = 26-pole HD type connector (for MINIECO-ECO2D-ECO4D drives) 2 = No connectors (for MICROECO drives)					

4.3.2 Power supply cables

	СР	M17	10				
	1	2	3				
1	1 Cable type page 39						
	CS = signal cable						
	CP = power supply cable						
2	Motor side connectors page 28-30						
	M17 = M17 7-pole connector						
	M23 = M23 6-pole connector						
3	Length						
	05 = 5 meters						
	10 = 10 meters 15 = 15 meters						

A. Terms and Definitions

Term	Symbol	Unit of measure	Definition	
MOTOR	I		1	
Continuous rated torque	T _{nom, 100K}	Nm	Torque supplied by the motor for an unlimited period of time, at nominal speed (in thermal balance condition), without exceeding the thermal limits of the relevant insulation class. This condition is defined during test run at conditions described in appendix B.	
Stall torque	Т _{о, 100к}	Nm	Torque supplied by the motor for an unlimited period of time, with blocked rotor (in thermal balance condition), without exceeding the thermal limits of the relevant insulation class. This condition is defined during test run at a rotation speed closed to 0 rpm, at conditions described in appendix B.	
Peak torque	Τ _p	Nm	Torque generated at max. current (peak). The max. torque is possible for short periods of time to have a dynamic system behaviour (abrupt variations of the operating condition). Exceeding this value causes the irreversible demagnetization of the rotor magnetic group.	
Rated speed	n _{nom}	rpm	Speed performed by the motor for an unlimited period of time, without exceeding the thermal limits of the relevant insulation class, with torque as defined in the TORQUE - SPEED curve shown in the motor specific diagram.	
Max. speed	n _{max}	rpm	Max. permissible rotating speed. It depends on centrifugal force of rotating masses, rotor balance grade and bearings.	
Stall current	I _{о, 100К}	А	Current (RMS value) phase - phase supplied to the motor in order to generate the torque in conditions of blocked rotor (stall).	
Peak current	۱ _р	А	Current (RMS value) phase - phase supplied to the motor in order to generate max. torque (peak). This current is limited by the motor magnetic circuit: excee this value even for a short time causes the irreversible demagnetization of magnets.	
Voltage constant	k _e	V/1000 rpm	Voltage (RMS value) phase - phase produced by operating motor at 1 000 rpm, at 20°C ambient temperature, with average windings temperature increment of 20 K.	
Torque constant	k _T	Nm/A	Ratio between torque with blocked rotor and current with blocked roto $(T_{0.100K}/I_{0.100K})$, with windings temperature increment of 100 K (insulation class F).	
Thermal time constant	t _{th}	min	Time necessary to heat the cold motor up to a temperature increase of 0.63×100 K with load $I_{0.100K}$.	
Winding resistance	R _{ph}	Ω	Electric resistance of phase - phase windings connected in Y circuit, at 20° ambient temperature.	
Winding inductance	ng inductance L _D mH Inductance of ph		Inductance of phase - phase windings connected in Y circuit.	
Electric time constant	t	ms	Ratio between winding inductance and winding resistance (L_{p} / R_{ph}).	
Moment of inertia (without brake)	J _{motore}	kg × m²	Moment of inertia of motor rotating elements.	
Moment of inertia (with brake)	J _{motore BR}	kg × m²	Moment of inertia of motor and brake rotating elements.	
Permissible radial load on motor shaft			Constant load radially applied on the centre of the motor shaft, at 3 000 rpm for nominal bearing service life of 10 000 h.	
Permissible axial load on motor shaft	F _N	Ν	Constant load axially applied on the motor shaft, at 3 000 rpm for nominal bearing service life of 10 000 h.	
BRAKE				
Supply voltage	U _{BR}	V	Voltage supplied to the brake excitation coil to release the brake.	
Brake power	P _{BB}	W	Power consumption of the brake excitation coil.	
Rated braking torque	T Nm Holding braking torque (it cannot be used to stop the motor).			
Brake disengagement delay time	ngagement t _{_BR} ms Reacting time from the moment the rated power support brake is completely disengaged.		Reacting time from the moment the rated power supply voltage is applied until the brake is completely disengaged.	
Brake engagement delay time			Reacting time from the moment the brake power supply is interrupted until the rated braking torque $T_{_{\rm BR}}$ is reached.	